indirect forms of solar energy

hydro

hydropower

electricity renewable share

average annual precipitation

hydro

C Ciências ULisboa

average annual precipitation

hydro resources

isboa

hydro

	Technical potential [TWh/ano]	Effective production [TWh/ano]	Installed power [GW]	Capacity factor	Share of electricity	
China	2500	616	171	41%	17%	
Canada	830	399	73	62%	63%	
Brasil	1250	391	78	58%	84%	
USA	1340	275	77	41%	7%	
Russia	1670	176	50	40%	18%	
Norway	240	127	30	49%	96%	
Portugal	25	7.3 4.9 (20 3)	4.9	7% 35% (20 3)	5% 32% (20 3)	

Survey of energy resources, 2010 (data from 2008)

large and small-scale hydro

hydro

run-of-river

large-scale

small-scale

lower than 10 MW

reservoir and run-of-river hydro

	Advantages	Disadvantages			
Reservoir	Storage Reversitibility	High environmental impact			
Run-of-river	Low environmental impact	Less predictability Low storage (<100 hours) High production with precipitation			

hydro power plant

hydro power plant

pumped storage power plant

hydro

Rotation when pumping

Ciências

Lisboa

turbines efficiency

Kaplan turbine (propeller type)

Pelton turbine

turbine types

hydro power plant

hydro

Power capacity	22 500 MW			
Capacity factor	50%			
Annual generation	98.8 TWh (2014)			

DE

Three Gorges, China, RioYan-Tse

Statement of the later

hydro

Itaipu, Brasil, Rio Paraná

Power capacity 14 000 MW **Capacity factor** 84% Annual generation

103.1 TWh (2015)

- ⊘ during operation: no release of CO₂, no fuel or water use
- large life time
- Iow levelized costs of electricity
- flood control and irrigation
- electricity storage by pumping
- leisure landscape

- landscape and ecosystems modification
- Ish migration
- methane emissions
- accidents (dams and turbines)
- opulation resettlement

levelized costs

Technology	Typical Characteristics		Typical Energy Costs	
Power Concration			(LCOE – U.S. Cents/kwn)	
r ower deneration				
Hydropower: Grid-based	Plant size: 1 MW–18,000+ MW Plant type: reservoir, run-of-river Capacity factor: 30–60%	Projects >300 MW: <2,000 Projects <300 MW: 2,000–4,000	2–12	
Hydropower: Off-grid/rural	Plant capacity: 0.1–1,000 kW Plant type: run-of-river, hydrokinetic, diurnal storage	1,175–3,500	5–40	

- Investimento inicial elevado, mas depende do local (65-75% engenharia civil,10% sistemas técnicos, 15-20% licenças, terreno).
- Custos de operação e manutenção reduzidos;
- Elevada vida útil
- LCOE depende das condições de operação (factor de capacidade, possibilidade de armazenamento).

Ciências ULisboa

hydr<u>o</u>

hydro

Considerar um coletor solar plano com 1 m^2 de área efectiva de captação solar, localizado a uma latitude de 40°, com $\eta_0 = 0.683$, $\alpha_1 = 1.17 W/(m^2 K)$ e $\alpha_2 = 0.01 W/(K^2 m^2)$.

Água (335 K): calor específico 4214 J/(kgK), massa volúmica 982 kg/m^3 .

- Determinar, para o dia de hoje, qual o ângulo de incidência do sol no painel coletor, posicionado num telhado com uma pendente que faz 30° com a horizontal, às 12h (hora solar).
- Determinar qual o rendimento do painel para uma irradiância de 800 W/m² para uma temperatura de funcionamento de 80°C e uma temperatura ambiente de 25°C.
- 3. Determinar o volume de água que é possível aquecer durante o período de tempo de uma hora nas condições explicitadas na questão anterior. Desprezar as perdas térmicas que possam existir no sistema de armazenamento e distribuição. Caso não tenha resolvido a questão anterior considerar um rendimento de 60%.

Num local em que a intensidade média de vento é de 6.8 m/s, foi instalada uma turbina eólica de potência nominal 10.4 kW e com diâmetro de pás de 9.7 m. Conhece-se ainda a curva de potência da turbina e a distribuição de frequência do vento no local:

intensidade da velocidade do vento $[m/s]$	2.5	5	7.5	10	11-20	>20
potência da turbina [kW]	0	2	5	10	10.4	0
frequência de ocorrência [%]	21.6	24.4	27.1	15.8	11.0	0.1

- 1. Calcular a electricidade anualmente produzida.
- 2. Calcular o fator de capacidade da turbina eólica.
- 3. Calcular o rendimento da turbina para uma intensidade média da velocidade vento de 10 m/s.

Uma turbina eólica com diâmetro de pás de 5 m encontra-se associada a uma bomba para elevar água a uma altura de 30 m. Assumir que as perdas de rendimento na bomba de água são desprezáveis.

- Sabendo que o rendimento da turbina é de 7% para uma intensidade da velocidade do vento de 8 m/s, calcular o tempo necessário para elevar 25 m³ de água. Considerar que a velocidade do vento é constante durante todo o período.
- 2. Sabendo que a irradiação média diária no local é de 5 kWh/m², qual seria a área necessária de painéis solares fotovoltaicos (rendimento médio 10%) para assegurar a electricidade necessária à bombagem do mesmo volume de água durante o período diário que existe disponibilidade solar.

O recurso e
ólico disponível, a ser explorado por uma turbina com diâmetro de pá
sD,pode ser estimado pela seguinte expressão

$$P_{disp} = \frac{1}{8}\pi D^2 \rho U^3$$

com ρ a massa volúmica do ar e U a intensidade da velocidade do vento. Explicar porque é que a potência média disponível num determinado período não pode ser estimada por

$$\overline{P}_{disp} = \frac{1}{8}\pi D^2 \rho \overline{U}^3$$

com \overline{U} a intensidade média da velocidade do vento nesse mesmo período.

BIBLIOGRAFIA

Ehrlich, R. Renewable Energy, a first course **Hydropower (8.1, 8.5)**

Boyle, G. Renewable Energy, Power for Sustainable Future **Hydroelectricity (5.)**

